\qquad DATE: \qquad
\qquad

For problems 1-5, match the word/phrase with the correct definition.

1. \qquad Dilation
2. \qquad Rotational Symmetry
3. \qquad Given
4. \qquad Vector
5. \qquad CPCFC
a. Always the first reason in a proof
b. Changes the size of a figure by multiplying both the x and y-values.
c. A quantity having direction as well as magnitude
d. Corresponding Parts of Congruent Figures are Congruent
e. When a figure rotates onto itself with a degree of rotation between 0 and 180 degrees.

For problems 6-10, determine if the statement is true or false. If false, explain why.
6. If $\triangle A B C$ and $\triangle D E F$ are congruent, then $\overline{C A} \cong \overline{E F}$.
7. The translation rule $(x, y) \rightarrow(x-3, y+4)$ can be written as $\langle 3,-4\rangle$.
8. In a 270° rotation you can expect each point of your original figure to move 3 quadrants counterclockwise.
9. A rectangle has 90° rotational symmetry.
10. A dilation is a rigid transformation.
11. The vertices of $\triangle A B C$ are $A(4,3), B(-1,-3)$, and $C(2,-1)$. What are the vertices of the image after undergoing a translation along the $\langle-2,5\rangle$?
12. Draw an example of a shape that has 2 lines of symmetry.

For problems 13-17, fill in the blank with the appropriate vocabulary word.
13. The original figure before any transformation is known as the \qquad .
14. An \qquad is another term for rigid transformation.
15. An image of a reflection is \qquad to the original image because the size of the shape hasn't changed.
16. A \qquad is the change in the position, size, or shape of a figure.
17. Writing a translation rule using vectors is known as \qquad -
18. Circle all of the figures below that have rotational symmetry.
A

B

C

D

For problems 19 \& 20, draw all of the lines of symmetry for the figure.
19.

20.

21. Describe in words the transformations that are occurring in the sequence given:

$$
(x, y) \rightarrow(x-4, y+2) \rightarrow(-x,-y) \rightarrow(2 x, 2 y)
$$

22. Reflect the figure over the line given.

23. Rotate $\triangle A B C$ around point $\mathrm{P} 180^{\circ}$ and then translate along \vec{w}.

24. Write the rule for the given transformation.

25. Are $\triangle N L M$ and $\triangle T S R$ congruent? Explain your reasoning using sequences of rigid transformations.

26. Using the congruence statement $\triangle B C D \cong \triangle R S T$, determine whether each of the statements below are true or false.
a) $\overline{B C} \cong \overline{S T}$
b) $\overline{C B} \cong \overline{S R}$
c) $\angle C \cong \angle S$
d) $\triangle D B C \cong \triangle T S R$
27. The triangles below are congruent. List all congruent corresponding sides and all congruent corresponding angles.

28. The trapezoids given at right are congruent.
a) What is the length of $\overline{S P}$?
b) Which angle is congruent to $\angle B$?

29. Use the figures at right. Quadrilateral $A B C D \cong$ Quadrilateral $W X Y Z$
a) What is the length of $\overline{Y Z}$?
b) What is $m \angle B$?

c) What is $m \angle X$?
d) Explain how you found $m \angle x$.
30. Write the proof.

Given: $\triangle M Q N \cong \triangle M Q P$
Prove: $\overline{M Q}$ bisects $\angle N M P$

Statements	Reasons

