Unit 2 Review

Chapter 2 & Chapter 3

Translations, rotations, and reflections are all rigid transformations.

TRUE or False

An isometry is a translation, rotation or reflection.

Component form is written as $(x, y) \rightarrow (x + 3, y - 5)$

or FALSE?

If triangle ABC is congruent to triangle XYZ, then segment BC is congruent to segment ZX.

If Quadrilateral CDEF \cong quadrilateral HIJK, then $\angle E \cong \angle J$.

TRUE or FORE?

What does the acronym CPCFC stand for?

Corresponding Parts of Congruent Figures are Congruent.

$\triangle ABC$ is congruent to $\triangle XYZ$. List all of the congruent corresponding parts.

$\angle A \cong \angle X$ $\angle B \cong \angle Y$ $\angle C \cong \angle Z$

 $\overline{AB} \cong \overline{XY}$ $\overline{BC} \cong \overline{YZ}$ $\overline{CA} \cong \overline{ZX}$

Draw the image of ABC after the given combination of transformations.

Translation along the vector, then reflection across line l.

Draw the image of ABCD after the sequence of transformations.

Rectangle ABCD is reflected across the y-axis, rotated 90° clockwise, and translated along the vector <-6, 2>

How many lines of symmetry does the image have? Does it have rotational symmetry?

Are figures ABCD and A'B'C'D' congruent? Explain why or why not.

Are figures CSMT and C'S'M'T' congruent? Explain why or why not?

$QuadrilateralGHJF \cong QuadrilateralMRLT$

List all the congruent angles:

List all the congruent sides:

Quadrilateral ABCD \cong Quadrilateral EFGH. In quadrilateral ABCD, AB = 16, BC = 5w + 7, and in quadrilateral EFGH, EF = 3y + 1, FG = 8. Find the value of the indicated variable.

Find the value of w:

Find the value of X:

Find the value of z:

Given: $Quadrilateral MNPQ \cong Quadrilateral RSTU;$ $\overline{MN} \cong \overline{PQ}.$ Prove: $\overline{MN} \cong \overline{TU}.$

Statements	Reasons

Work Time: Review Packet