PERIOD:

1) $\Delta PQR \cong \Delta STU$. List all pairs of congruent sides and angles of the figure.

____≅ ____≅ ____

_____ ≅ ____ ≅ ____

____≅ ____≅ ____

For problems 2-7, complete each statement.

- 2) If $\triangle PQR \cong \triangle STU$ and $m \angle P = 50^{\circ}$, then $m \angle S =$ _____
- 3) If $\Delta LMN \cong \Delta QRZ$ and MN = 6 feet, then RZ =
- 4) If quadrilateral ABCD \cong quadrilateral UVWX and BC = 10 centimeters, then VW = _____
- 5) If ectangle EFGH \cong rectangle JKLM EF = 7 inches, then ____ = 7 inches
- 6) If pentagon EFGHI \cong pentagon TUVWX and $m \angle G = 70^{\circ}$, then $m \angle ___ = 70^{\circ}$
- 7) If $quadrilateral\ BCDE \cong quadrilateral\ STUV$ and $BE = 12\ meters$, then ____ = 12\ meters

For problems 8-11, fill in the missing statements or reasons for the proof.

8) Given: $\Delta MYZ \cong \Delta MQP$ Prove: M is the midpoint of \overline{YO}

Statements	Reasons
$1. \Delta MYZ \cong \Delta MQP$	1.
2.	2. Corresponding parts of congruent figures are congruent.
3. M is the midpoint of \overline{YQ}	3.

9) Given: $Quadrilateral\ PQTU \cong Quadrilateral\ QRST$ Prove: \overline{QT} bisects \overline{PR}

Statements	Reasons
1. Quadrilateral PQTU ≅ Quadrilateral QRST	1.
$2.\overline{PQ}\cong\overline{QR}$	2.
3. Q is the midpoint of \overline{PR}	3.
4. \overline{QT} bisects \overline{PR}	4.

10) Given: $\triangle ABC \cong \triangle ADC$

Prove: \overline{AC} bisects $\angle BAD$ and \overline{AC} bisects $\angle BCD$

Statements	Reasons
1.	1. Given
2.	2. Corresponding parts of congruent figures are congruent.
3.	3. Corresponding parts of congruent figures are congruent.
4.	4. Definition of angle bisector

11) Given: $Pentagon\ ABCDE \cong Pentagon\ FGHJK; \angle D \cong \angle E$

Prove: $\angle D \cong \angle K$

Statements	Reasons
1.	1.
2.	2. Given
3. ∠ <i>E</i> ≅ ∠ <i>K</i>	3. Corresponding parts of congruent figures are congruent.
4.	4. Transitive Property of Equality

12) $\Delta MNP \cong \Delta QRS$. Determine whether each statement about the triangles is true or false. (Show all work)

a) ΔQRS is isosceles

b) \overline{MP} is longer than \overline{MN}

d) The perimeter of ΔQRS is $120 \ mm$.

e) $\angle M \cong \angle Q$